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O =~ A general equilibrium theory for nets constructed from two families of perfectly
=~ ﬁ flexible elastic fibres is presented. The fibres are assumed to be continuously
O distributed and to offer negligible resistance to shear distortion. Configurations of
O nets are shown to be minimizers of the potential energy of deformation only if the
= associated fibre stretches are points of convexity of the fibre strain energy functions

and the stresses in the fibres are tensile. These results are used to construct a relaxed
energy density that automatically accounts for wrinkling of the network.
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420 D. J. Steigmann and A. C. Pipkin

Universal solutions are obtained. These are the deformations that can be
maintained in every elastic net by the application of edge tractions and lateral
pressure alone. A detailed studyv of the differential geometry of nets is included to aid
in their interpretation.

The equilibrium theory for half-slack (wrinkled) nets is developed and applied to
the solution of some representative examples.

1. Introduction

In this work we study the mechanics of elastic networks, modelled as membranes
consisting of two families of perfectly flexible elastic fibres. The fibres are assumed
to be continuously distributed and fastened together at their points of intersection
to prevent slipping of one fibre family relative to the other. The model that we
envision here is applicable to coarse mesh nets in which the force transmitted by a
family of fibres depends only on the stretch of that family and the resistance to shear
distortion (angle change between the fibres) is negligible.

A similar theory for nets consisting of inextensible fibres was proposed by
Tchebychev (1878) and later used to study the problem of mapping a plane
orthogonal network of inextensible fibres onto a surface whose shape is specified in
advance. This is known as the problem of clothing a surface and is now a standard
problem in differential geometry (Stoker 1969, §20). Recently, Pipkin (1980, 1981,
1984) refined this problem by accounting for elastic resistance to shear distortion
while retaining the constraint of fibre inextensibility.

A theory for plane deformations of inextensible networks was formulated by
Rivlin (1955) and Adkins (1956), and is summarized and extended in the book by
Green & Adkins (1970, ch. 4). Rivlin (1959) has also presented a theory for curved
surfaces, including an analysis of small deformations superposed on a finite
deformation. Pipkin (1986a) and Pipkin & Rogers (1987) have extended the theory
to account for the possibility of wrinkling of the network. Parallel developments in
the mechanics of nets without shear resistance are reported in a series of papers by
Kuznetsov (1965, 1969, 1982, 1984), whose work is primarily concerned with
establishing existence of an equilibrated network on a given surface. The effects of
fibre elasticity have recently been studied by Green & Shi (1989) in the context of a
general theory for plane deformations. Wrinkling is taken into account but shear
resistance is neglected. We develop this theory further in the present work and
extend it to account for arbitrary deformations of curved surfaces.

In §2 we establish the notation and set down some elementary results from tensor
analysis and differential geometry. A general equilibrium theory for membranes
regarded as two-dimensional elastic surfaces is formulated in §3. The equilibrium
equations are the Euler-Lagrange equations associated with the potential energies of
edge loaded or pressurized membranes. A theory for networks consisting of elastic
fibres that are initially orthogonal is developed in §4. This theory is obtained simply
by specializing the strain energy of a general membrane to reflect our basic
hypotheses regarding the mechanical behaviour of nets.

Section 5 is devoted to the differential geometry of nets. We obtain the Gauss and
Mainardi—Codazzi equations of compatibility in forms that involve the fibre
stretches, the shear distortion, the normal fibre curvatures and the torsion. Of
particular importance here are the geodesic curvatures of the fibres and certain

Phil. Trans. R. Soc. Lond. A (1991)
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Equilibrium of elastic nets 421

auxiliary parameters depending on the strain that are used to describe the intrinsic
geometry of the net. Kuznetsov (1982) has referred to these parameters as
Tchebychev curvatures in a less general context. We retain this terminology here.

Deformations that furnish local minima of the potential energy are studied in §6.
We use the necessary condition of rank-one convexity (Graves 1939) to prove that
in an energy minimizing configuration the fibre stresses are non-negative. Fur-
thermore, the stretch of a family of fibres must belong to a domain of convexity of
the strain energy function for that family. If these requirements are met and the net
is in equilibrium under fixed edge tractions and boundary placements, then the
deformation is a global minimizer of the potential energy.

Certain mild constitutive assumptions are introduced in §7 which, taken together
with the results of §6, lead us to conclude that the energy minimization problem
generally has no solution. This difficulty is resolved by using a so-called relaxed
energy in place of the original strain energy function. Existence of solutions to the
relaxed minimization problem has been established for a class of energy functionals
containing those specific to the theory of elastic nets (Morrey 1952; Dacorogna 1989).
We find that a relaxed fibre strain energy is a convex, non-decreasing function of the
fibre stretch that vanishes if the stretch is compressive. For compressive stretches,
the deformation of the net can be interpreted as the smooth limit of a sequence of
finely wrinkled configurations in which the deformation gradients oscillate rapidly
and discontinuously. We construct such a sequence to show how the relaxed strain
energy can be obtained from the original energy. This idea has been used previously
to derive a theory for wrinkled inextensible nets (Pipkin 1986a) and a general
tension-field theory for wrinkled isotropic elastic membranes (Pipkin 1986b;
Steigmann & Pipkin 1989; Steigmann 1990).

The relaxed strain energy is used as the basis for the equilibrium theory of §§8-11.
In §8 we derive the equilibrium equations for nets in which both fibre families are
tense, and for half-slack nets in which one family is tense and the other wrinkled.
The problem of finding universal deformations of tense nets is addressed in §§9 and
10. These are the deformations that can be maintained in a net by application of edge
traction and lateral pressure alone for all fibre strain energy functions. Those
restrictions arising only from the tangential equations of equilibrium are obtained in
§9. The Gauss and Mainardi—Codazzi conditions are used in §10 to find further
restrictions necessary for equilibrium under uniform lateral pressure, including the
special case of zero pressure.

The general equilibrium theory for half-slack nets is developed in §11. This theory
is of such a simple form that the deformation can be obtained explicitly in the
absence of lateral pressure. Furthermore, the traction problem is statically
determinate in the sense that the fibre stress is described by an equation that does
not involve the deformation. Finally, we specialize the theory to describe
deformations of half-slack nets that initially lie in the plane or on general surfaces of
revolution.

2. Summary of notation

Our analysis is based on convected Gauss coordinates 6* (o =1,2) on the
membrane surface which maintain a fixed one to one correspondence with material
points under deformation. In this section relevant results and notations are recorded
for later use (see Green & Zerna 1968).

A deformation carries the material point p with coordinates 6* from its reference

Phil. Trans. R. Soc. Lond. A (1991) 17-2
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422 D. J. Steigmann and A. C. Pipkin

position x(6*, 6%) to the place r(6*, 6%) in euclidean 3-space, and induces the natural
basis {a_},
aa = rva’ (21)

which spans the tangent plane of the deformed surface at p, provided that
r,xr ,#0. Commas are used to denote partial derivatives with respect to the 6.
Then

dr = a,do* (2.2)

and the first fundamental form on the deformed surface is
|dr|? = aaﬂdﬁa de?, (2.3)
where @y =a, ag (2.4)

is the metric tensor. The determinant of the matrix (a,,) is denoted by a = det (@yp)
and is non-negative according to (2.3). When a > 0 the reciprocal metric components
a*® are uniquely defined by the relations

a*a,, = 03, (2.5)
where 0} is the Kronecker delta. These then give the reciprocal basis {a*} according to
@ = a*a, (2.6)

The directed unit normal n(6*, 6%) to the deformed surface is given by
€N =a,xa, n=ica, xa, (2.7)
where € =re,, ¢ =ates (2.8)

and e* = ¢, is the unit alternator, equal to 1 or —1 according as (a, ) = (1,2),
(2, 1), respectively, and zero otherwise. The relations

nxa*=e’a; nxa,=c, a (2.9)
will also be used.
The curvature tensor and the Christoffel symbols are defined by

by=na,,=—a, n, (2.10)
and I'y,=aa,,, (2.11)
respectively. Then a,,=1I7a,+b,n. (2.12)

Corresponding results for the reference surface may be deduced with the aid of
notations

A,=x, Aaﬂ = Aa'Aﬂ, A = det (Aaﬂ), A“VAW, = J%,
A“=A“ﬂAﬂ, /“ac,ﬁ'=A§eaﬁ: p = A7z e, /La/iNzAaXAﬂ»J
and By=NA,,=—A, N, [Il,=A"A4,, (2.14)

Let scalar functions w,(6", 6%) and u*(0", 6%) be related by u* = A*/u,. These induce
a surface vector

(2.13)

u=uAd,=u, A%, (2.15)

with partial derivatives u , given by
u,—wBy, N=uy A= A4, (2.16)
where Wy = Aw Tl g, =uy ,—u, I, (2.17)

Phil. Trans. R. Soc. Lond. A (1991)
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Equilibrium of elastic nets 423

are covariant derivatives on the reference surface.
Let L and M be orthogonal unit vectors spanning the tangent plane of the
reference surface at the point p. Then

L=L,A*=1*4, M=M A*=M"A, (2.18)

and A,=L,L+M,M, A*=L*L+M*M,
Ap=L,Ly+ MM, A% =L*L/+MM". |
If L and M are oriented so that L x M = N, then we conclude from (2.13,19) that
top = L My—M, Ly, p* = L*MP — ML/ (2.20)

(2.19)

We use a version of the Green—Stokes theorem,

JJ v, dot do? =§ v* e, d6”, (2.21)
D oD

for smooth functions v*(6*, 6%) and arbitrary regular regions D of the (6, 6%)-plane:
Let v*(6,60%) (1 = 1,2,3; a = 1, 2) be smooth and let {e;} be a fixed rectangular basis.
For fixed 4, apply (2.21) to v*, multiply by e; and sum to get

JJ v“,ad01d02=§ v e, A0, (2.22)
D oD

3. Membrane theory

where v* = vi*e,.

In this work we treat nets as elastic membranes with special properties, to be
specified in §4. In the present section we outline the membrane theory of elastic
surfaces as developed by Stoker (1964) and Green et al. (1965). Thus we regard the
membrane as a two-dimensional elastic continuum with a strain energy W, measured
per unit area of the reference surface. The deformation gradient F is the mapping
defined by

dr = Fdx. (3.1)

W is taken to be a function of F and the particle p with coordinates (61, 62). However,
we do not indicate dependence on the latter variable explicitly. By using (2.2) and
do* = 4A*-dx in (3.1), we obtain

F=a, A*; a,=FA

a ot

(3.2)

Let »¥(k = 1,2, 3) be the components of ¥ on a fixed rectangular basis {e,}. Then the
Piola stress T, measuring forces in the membrane per unit length of arc on the
reference surface, is defined by

T=T:®A,; T*=@W/)e,. (3.3)

We assume that W is frame indifferent, i.e. W(F)= W(QF) for all proper
orthogonal Q. It follows that W(F) = W(C), where

C=F'F=a,4"® A4 (3.4)

is the Cauchy—Green strain (see Cohen & Wang 1984). If W is symmetrized in the Wyps

we find
T™ = Jo‘“/’a/,, (3.5)

Phil. Trans. R. Soc. Lond. A (1991)
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424 D. J. Stesgmann and A. C. Pipkin
where J = (a/A)% (3.6)
is the areal stretch and o = 2J W/ 0,z (3.7)

are the contravariant components of the Cauchy stress
o =0"a,®a, (3.8)

Suppose the domain of the function x(-) is an open region S of the (6, 6%)-plane
with piecewise smooth boundary 0S. Let the membrane be subjected to loads
derivable from a potential P[r]. Then we define a potential energy E[r] of the
deformation by

E[r] = J J W(F) Az d6* d6> — P[r]. (3.9)

We consider two types of loading.

(1) Pressure loading

In this case the membrane is a closed surface subjected to a spatially uniform,
volume-dependent pressure p acting on the interior surface. Then

Vir]
Plr] = f p(v)do, (3.10)
VO
where Vir] = JJ x(r;r,)d6 d6®;  x =gefror  xr (3.11)
S

Here V[r] is the volume enclosed by the deformed membrane and ¥, is an arbitrary
constant.

(ii) Dead loading
The membrane is subjected to an edge load ¢ applied to a part 08, of the boundary.
Here ¢ represents force measured per unit arc length s of the curve x(08,). Let 0S, be

the complement of 0S, and suppose r(08,) is prescribed. If ¢ is assigned as a dead load
then

Plr] = f t-rds= J trs,d6*, (3.12)
x(@Sy) oSy

where s = s, 4% is the unit tangent to the curve x(dS,) and s, = 4,,d6//ds.

The equilibrium equations for the membrane are the Euler-Lagrange equations
associated with the functional £. For the problem of pressure loading these are
(Stoker 1964 ; Steigmann 1990)

AHAT) 4+ pJn=0; (0',0%€S. (3.13)

These equations also describe the problem of frictionless contact of a membrane with
a smooth surface. The contact pressure p(6*,6?) is determined in the course of the
analysis. For the dead-load problem, (3.13) remains valid with p =0, and is
supplemented by the natural boundary conditions

Twv,=1t;, (0",6%€0S, (3.14)
where v = v, A% is the rightward unit normal to the arc x(dS,):
v=sxN; v,=p,,do¢/ds. (3.15)

Phil. Trans. R. Soc. Lond. A (1991)
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Equilibrium of elastic nets 425

4. Elastic networks

We assume that the material fibres are arranged in an orthogonal network on the
reference surface. The trajectories of this network are defined at each point p by a
non-holonomic field of unit vectors L and M, tangential to the fibres and oriented so
that L x M = N. Thus equations (2.18)—(2.20) are applicable.

The deformation gradient F maps the material vectors L and M onto

AMl=FL, um=FM, (4.1)
respectively, where A=|FL|, p=|FM| (4.2)

are the fibre stretches and I and m are unit tangents to the fibres on the deformed
surface. From (2.19b) and (3.2a) it follows that

F=IL%,Q@L+Ma,® M. (4.3)
Then (2.1), (4.1) and (4.3) result in
M= LV, um=(M-V)r, (4.4)

where V = 4%(+) , is the tangential gradient operator on the reference surface.
From the representations

I=1a, m=m"a, (4.5)
and (4.1) and (4.3), we find
Al =L*  um*=M* (4.6)
Thus (4.3), (4.5) and (4.6) yield
F=AMNQL+uymQ@ M. 4.7)
The fibre shear angle y is defined by
siny = [-m. (4.8)
Then the Cauchy—Green strain is
C=NPLQOL+p*MQQM~+2Ausiny(LRM+MQ L), (4.9)

and this furnishes the metric on the deformed surface in terms of the initial fibre
directions, the stretches and the shear angle:

Uy = Lo, L+ p*M Mo+ Apsiny(L,My+M, Ly). (4.10)

This result will prove useful in our study of the differential geometry of nets in §5.
The square of the areal stretch is given by

JE=a/A = ptuNa,, ap, (4.11)
By substituting (2.206) and (4.10) into this we find
J = Aplcosyl. (4.12)

According to (2.19a), (3.2b) and (4.7), the tangent basis vectors a, on the deformed
surface can be expressed as
a,= AL, +yumM,. (4.13)

Phil. Trans. R. Soc. Lond. A (1991)
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426 D. J. Steigmann and A. C. Pipkin
Then (2.7a), (2.20a), (4.12) and (4.13) result in

Ixm = |cosvy|n, (4.14)

which specifies the orientation of the deformed tangent plane in terms of the fibre
directions.

We define an elastic net to be an orthotropic elastic membrane with particular
properties. The material symmetry axes are taken to be the initial fibre directions L
and M. Thus the strain energy function W(C) is subject to the restrictions (Cohen &
Wang 1984) R R

W(C) = W(P*CP), PefSG, (4.15)

for all Cauchy—Green strains C, where SG is the symmetry group:
SG={+(L®L+M®Q M)} (4.16)

From (4.9), (4.15) and (4.16) it is straightforward to show that the strain energy is
expressible as an even function of A, x4 and siny. Since A and g are non-negative by
definition, we have W(C) = w(X, x, |siny]).

Proceeding with our characterization of nets, we postulate that w(A,u, )=
W(A, p) for all fibre stretches A and g, so that the local response of the membrane is
unaffected by shearing of the fibres. Next, consider a unit square of homogeneous
material whose composition is identical to that of a fixed point p of the reference
surface. Let the edges of the square be parallel to the fibres. The forces required to
deform the square into a rectangle of dimensions A and x are 1, and %,. We postulate
that the force carried by a family of fibres is independent of the stretch of the
orthogonal family for all fibre stretches A and g, i.e. #,, = 0. Thus we conclude that
the strain energy of an elastic net can be expressed in the form

W(C) = F(A)+G(u), (4.17)

where A=L-CL=a,l*LF, p*=M CM = a,,MM (4.18)
The stress is obtained from (3.7), (4.17) and (4.18):

Jo = XY LALP + p g () M*MP, (4.19)

where JA)=F(A) and g(u)=G"(n) (4.20)

are the fibre stresses. We assume that f(+) and ¢(*) are continuous. From (3.5) and
(4.5,6) we get

T* = f(A)IL* + g(n) mM*. (4.21)

Then the Piola stress is
T=fA)I®L+g(u)m® M. (4.22)

We further assume that
F(1)=6G(1)=0, f(1)=g(1)=0. (4.23)

Then from (2.19¢), (4.10), (4.17) and (4.22) it is evident that the reference surface can
be mapped with W =0 and T = 0 onto any surface whose metric can be expressed
in the form

Wy = Aygtsiny(L,My+M,Ly). (4.24)
Phil. Trans. R. Soc. Lond. A (1991)
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Equilibrium of elastic nets 427

Accordingly, any such surface may be regarded as a stress-free reference
configuration for the elastic net.

5. Differential geometry of a network

To describe the deformed configurations of networks it is helpful to relate the
deformation to the variables used in the classical differential geometry of surfaces
(Struik 1961; Kreyszig 1968), such as the gaussian and mean curvatures and the
intrinsic and extrinsic curvatures of the fibres. For our later work it is important to
have formulae for these variables that involve the fibre stretches, the angle of shear
and the initial fibre trajectories. It is well known that the intrinsic and extrinsic
geometries of a surface are not independent, but are connected by the Gauss and
Mainardi~Codazzi equations of compatibility. These relations aid in the int-
erpretation of the universal solutions of §§9 and 10 when an explicit expression for
the deformation is not available.

(@) Curvature tensor —gaussian and mean curvatures

We begin by deriving an expression for the covariant components b,, of the
curvature tensor in terms of the normal fibre curvatures

K, = bV, Ky = b ymemf (5.1)

and the torsion 7= by, lrm/. (5.2)
To this end we observe from (4.6) that

bopLPLF = N2k, by MPMP = pk,,, b, L*MP = Apr. (5.3)

We can use the components b, to define a tensor b= b,sA* ® A’ on the reference
surface. Substituting (2.19b) and (5.3), we find

b=k, L®L+p*k,, M M+Iur(L®M+MQ L), (5.4)
from which we recover the desired result:
bos = A’k Ly L+ Pk M Mg+ Apt (L, Mg+ M, Lp). (5.5)
Now define b = det (b,5) and recall that 4 = det (4,). Then
b/A = 3 u' b, by (5.6)
and by substituting (2.20b) and (5.5) we obtain
b/A = (Ap)?(Kk; K, —T2). (6.7)

This result, combined with (4.11) and (4.12), furnishes the gaussian curvature
k=b/a:
Kk = sec?y(K, Ky —T2). (5.8)

Next we obtain an expression for the mean curvature H = }a*’b,;. From (4.10) it is
easily confirmed that

J2a = pPLALF + NX2MeMP — Qp sin y(L*MP + M*LP). (5.9)
Then (4.12) yields '
2H = sec?y(x,+ K, —27siny). (5.10)
Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

e

P\
A \
L3
[ %
P

A

y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/an \

a

THE ROYAL A

A

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

428 D. J. Steigmann and A. C. Pipkin

Equations (5.8) and (5.10) are identical to formulae obtained elsewhere (Pipkin 1984)
by a different method.

(b) Geodesic and Tchebychev curvatures
We introduce auxiliary unit vectors

p=nxl, g=nxm (5.11)

lying in the tangent plane of the deformed membrane. Then {/, p, n} and {m, q, n} are
right-handed orthonormal bases for 3-space. We will have need of the gradients of
the unit fibre vectors [ and m:

l,=x,ptu,n; m, =y, q+v,n, (5.12)
where =Pl yo=qm, u =>byll, v,=b,m (5.13)

One of our main objectives in the present section is to establish formulae for the
tangential components of the directional derivatives

Fl,=np+r,n mm, = nmq+/<mn,1
ml ,=¢,p+Tn, I'm ,=¢,q+7n, J (5.14)
in terms of the fibre stretches A and g, the fibre shear angle y and the initial fibre
vectors L and M. Here 7, and %,, are the geodesic curvatures of the I- and m-
trajectories, respectively. The coefficient ¢, measures the tangential part of the rate
of change of I with respect to arc length along an m-fibre. ¢,, has a similar
interpretation. These latter variables are not discussed in the standard differential
geometry texts. For axisymmetric configurations of nets they are equivalent to
parameters referred to as Tchebychev curvatures by Kuznetsov (1982). We are
unable to find any independent corroboration of this attribution. However, we will
adhere to Kuznetsov’s terminology and henceforth designate ¢, and ¢, as the
Tchebychev curvatures of the I- and m-fibres, respectively.

According to (5.11a) and (5.14a),

nxl*l-l =9, and nxp-l, 6 =0. (56.15)

Multiplying the second equation by p* (= p-a*), adding the result to the first
equation and writing

a* = p*p+1 (5.16)

leads to N, =a ey . (5.17)
Similarly we find

N = a_%e“ﬂmﬂ’a. (5.18)

We can write these in terms of covariant derivatives on the reference surface:

n= J_l(/’(/aﬂlﬁ')lw N = J_l(luaﬂmﬂ)la‘ (519)

Now we use the relations [, = a,, and m, = a,;m” together with (4.6) and (4.10) to
get

ly,=AL,+psinyM,, m,= uM,+AsinyL,. (5.20)
From these results and (2.20b) we finally derive
Jn, = (wsinyL*—AM®),, Jy,, = (uL*— A sinyM*)],, (6.21)

Phil. Trans. R. Soc. Lond. A (1991)
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where J is given by (4.12). The geodesic curvatures 7, and #,, of the initial fibre
trajectories are obtained simply by setting A =1, 4 = 1 and y = 0, identically:

N =—M,, 9y =L, (5.22)

The Tchebychev curvatures can be expressed in terms of A, g, y and the initial fibre
vectors as follows: We impose the condition that the basis vectors a, in (4.13) be
holonomic, as in (2.1). Thus if these vectors are continuously differentiable functions
of 6 and 0%, we require that

WAL, +pmM,) ;= 0. (5.23)
From (2.20b) and formulae analogous to (5.17) and (5.18) for 5, and 3,,, we obtain
M(Al) ,—L*(um) , = Ay, + pmy,,. (5.24)
Then (4.6) and (5.14b, ¢) result in
Ay +pmyy, = (M-VA) = (L-Vp)m+Ap($p— P q). (5.25)
We scalar-multiply by m and note from (4.14) that
pm=nxl-m=n-Ixm=|cosy|. (5.26)
This, together with (4.8), leads to the result
J¢, = Jy,,+ (Acosy) M-Vy. (6.27)
A similar procedure provides
JP, = Jn,—(ucosy)L-Vy. (5.28)

From these formulae it is evident that for the special case of an orthogonal network
(y = 0), the Tchebychev curvature of a family of fibres is equal to the geodesic
curvature of the orthogonal family. In particular, this conclusion applies to the fibre
trajectories on the reference surface.

(¢) The equations of Gauss and Mainardi—Codazzi

The various geometric variables that have been introduced in this section are not
independent. They must be restricted so as to ensure that equations (5.12) are
integrable, i.e.

W (agpt+ugn) =0, u(ysq+vyn) ., =0. (5.29)

From these we obtain the well-known Gauss and Mainardi-Codazzi compatibility
equations in forms that are useful in the applications considered here. According to
(2.10) and (5.11a) and (5.12),

n,=-—b,a and p. =-—b,a*xl—xl (56.30)
Substituting these into (5.29a) and making use of (5.16) and (5.13¢,d), we obtain
/uﬁy[(xﬂ,y_uﬁba'ypa)p_‘_ (xﬁbaypa+uﬂ,y) n] = 0? (5‘31)

from which it follows that
i (y , —ugb,, p*) =0 and  p(axzb,, p*+uy,) = 0. (5.32)
A similar procedure applied to (5.295b) furnishes the system

/’Lﬂy(yﬂ,y_vﬂbay qa) =0 &nd /’(/ﬁ’y(yﬂbqua-‘_vﬂ,y) =0. (5'33)
Phil. Trans. R. Soc. Lond. A (1991)
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After much effort we find that (5.32a) and (5.33a) both reduce to the Gauss
equation (see Appendix):

Jr = (A M*— ) L), =3 A cos y[(LMP + MLP) y ) (5.34)

Here « is the gaussian curvature, given by (5.8). From (5.32b) and (5.33b) we derive
the Mainardi-Codazzi equations

J(Ap) (L — Ak, M*)
J (Ape) > (pek g L* — ATM)

Mo —Tsiny) + gk siny—7), |
P (K SINY =T) + 9, (k, — T 8D Y), |

respectively. These latter equations are also the integrability conditions for (5.30a).

Let «,, and «,, be the normal curvatures of the L- and M-trajectories, respectively,
and let 7 be the torsion. Then we can read off the Gauss and Mainardi-Codazzi
equations for the reference surface from (5.34) and (5.35):

K= (M = L))
(TL* =k M), = 9, Kpg = N0 T (5.36)
(

(5.35)

|o¢'—
|o¢_

o’

Ky L8 —TM)|, = 9y K, =91,
Here
K=K, Ky—T" (5.37)
is the gaussian curvature of the reference surface. The mean curvature is given by

H =Lk, +xy). (5.38)

6. Energy minimizers, convexity and rank-one convexity

In this section we characterize those deformations r(6',6%) that minimize the
potential energy K[ -] locally, in the sense that

E[r] < E[r+Ar], (6.1)
for all sufficiently small perturbations Ar(6', %) that vanish on 08,:
|Ar] <e, (6",0%)eS; Ar=0, (6',0%€0S,. (6.2)

We assume that r(-) is continuously differentiable.
Graves (1939) has shown that if 7 is a local minimizer, then W(-) is rank-one convex
at F=r ,® A*:
WF+a@b)—W(F)>a T(F)b, (6.3)

for all @ and b of the form
a=a*a,+an, b=> 4% (6.4)

and every (0',0%)eS. W(-) is said to be rank-one convex (without qualification) if
(6.3) is satisfied for all F. Graves proved (6.3) for functionals of the form (3.9) with
P[r] absent. The result is known to be valid for the problem of dead-loading
(Truesdell & Noll 1965, §68 bis). For the problem of pressure loading the necessity
of (6.3) follows from the property that x(r;r ,) is rank-one affine (Steigmann 1986,
1991):

X(r;r,a+aba)_x(r; r,a) = a‘iba(aX/a/ri,a); a’i =ae;. (65)
Phil. Trans. R. Soc. Lond. A (1991)
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For elastic nets we show that W( ) is rank-one convex at Fif and only if it is convex
at F, ie.
W(F+AF)—W(F) > T(F):AF, YAF. (6.6)

The notation A4: B is used to denote the scalar product, tr (ATB), of tensors 4 and B.

W (-) is said to be convex if (6.6) is satisfied for all F. Sufficiency follows simply by

setting AF = a ®b in (6.6). To prove necessity, we first show that W(-) is rank-one

convex at F only if F(-) and G(*) are convex and non-decreasing at A = |FL| and
= |FM|, respectively, i.e.

FA+a)—F(A) 2 af(A), Gp+p)—G(p) = pg(n) (6.7)

and fA) =0, gp)=0 (6.8)

for all & and g such that A4+a >0 and g+ > 0. We then show that if the fibre
stretches A and g delivered by F satisfy (6.7, 8), then F satisfies (6.6).

To prove these statements we begin by recording some auxiliary kinematical

identities. Let
F* = F+AF, C* = (F*)'F*, (6.9)

Then
C*¥ = C+FY(AF)+ (AF)*F+ (AF)*(AF), (6.10)

where C = F'F. The fibre stretches associated with F* are given by A* = (L C*L):
and u* = (M- C*M):. From (4.1), (4.2) and (6.10) we obtain A* and x* as the non-
negative roots of

(A*)2 = A2+ 2Al- (AF) L+ |(AF) LJ?, 1

(u*)? = ,uz+2,um-(AF)M+|(AF)M|2.J (6.11)
For AF = a ® b these become
(A%)? = X*+24(aD(b-L)+laP*(b-L)*, |
(w*)? = p+2p(a m) (b M) +|al*(b- M)*.| (6.12)
According to (4.22),
F)b = f(A) (@) (b- L) +g(x) (a-m) (b-M). (6.13)

Then for elastic nets (6.3) is equivalent to the inequality
FQ*)+Gu*)—FA)=G(p) = f(A)(a-]) (b-L)+g(n)(a-m)(b-M),  (6.14)

where A* and u* are the non-negative roots of (6.12). To examine the implications of
(6.14), set a = an. Then (4.14) and (6.12, 14) imply that

FQ*)+G(u*) > FQ)+G(p), YA* 22 and p* > p. (6.15)

Now let b*M =0. Then p*=p and we conclude that F(A*) = F(A), VA* > A
Similarly, by setting b-L = 0 instead we deduce that G(u*) = G(p), Vu* = p. From
these results it follows that A and u satisfy (6.8), i.e. the fibre stresses delivered by
an energy-minimizing deformation are non-negative. Next, let b M = 0 in (6.14)
with a arbitrary. Then u* = x4 and (6.14) becomes

FOA¥)—F(A) = fA) (a-1) (b-L). (6.16)
Phil. Trans. R. Soc. Lond. A (1991)
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Now choose b = L and a = al with A+a = 0. Then (6.12a) gives A* = A+« and
(6.16) reduces to (6.7a). Similarly, by taking b = M and a = fm with p+p = 0, we
find that (6.14) reduces to (6.7b).

We have shown that W(-) is rank-one convex at F only if A(= |FL|) and u(= |FM]|)
satisfy (6.7) and (6.8). We now show that if A and u satisfy (6.7) and (6.8), then W(-)
is convex at F, i.e. F satisfies (6.6). To this end we combine (6.7a,b) to get

FQA*)=F(A) + G(p*) = Gp) Z (A* =) fA) + (™ — p) g (). (6.17)

From (4.22) it is apparent that (6.6) is equivalent to
F(A*)—F(A)+G(p* u) = f() 1 (AF)L+g(u)m- (AF) M, (6.18)
where A* = |F*L|, ,u* = |F*M| and F* = F+AF. (6.19)

From (4.1) and the inequalities {- F*L < |F*L|, m - F*M < |F*M]| one can easily
verify that
A=A 2 I-(AF)L, pu*—u>=m (AF)M. (6.20)

It is then evident that (6.18) follows if (6.8) and (6.17) hold. In summary, we have
shown that W(-) is rank-one convex at F if and only if it is convex at F. Moreover,
these inequalities are equivalent to (6.7) and (6.8), where A and p are the fibre
stretches delivered by F.

Suppose now that r(6', 6?) is an equilibrium deformation for the problem of dead
loading (§3). Then 7 is a solution of (3.13) and (3.14) with p = 0. Let F be the gradient
of r and suppose the associated fibre stretches satisfy (6.7) and (6.8). From (3.9),
(3.12), (3.14), (6.1) and (6.2b),

E[r+Ar]—E[r] = f [W(F+AF)—W(F)]A%d01d02—3€ . T(F)v-Ards,
S x(0S)
(6.21)

where AF = (A ) ® A* Because r is an equilibrium deformation, we can use the
Green—Stokes theorem to obtain

Elr+Ar] = E[r]+ U [W(F+AF)—W(F)— T(F): AF]A*d0"d6*.  (6.22)
S

The integral is non-negative because F satisfies (6.6). Furthermore, since |Ar| was not
restricted in the development leading to (6.18) (or (6.6)), it follows that K[r] is the
absolute minimum energy. Thus for the problem of dead loading of an elastic net, all
local minimizers are global minimizers as well.

7. Relaxed energy density and continuously distributed wrinkles

In addition to the hypotheses on the fibre response functions ¥, G, f, g stated in §4,
we assume that f and g are positive (respectively negative) if A and u are greater
(respectively less) than unity, together with

F,G—0w as A,u—0. (7.1)

Our assumptions imply that inequalities (6.8) are violated when A or x €0, 1). Thus
deformations that deliver fibre stretches in this interval cannot be energy minimizers.
One might therefore attempt to find equilibrium deformations for which A > 1 and

Phil. Trans. R. Soc. Lond. A (1991)
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4 = 1 at all points of the material domain S. For example, deformations that furnish
stretches 4 = 1 and A > 1 correspond to uniaxial states of stress and satisfy (6.8). It
is easy to see that solutions of this kind do not exist, however: the equilibrium and
compatibility equations (3.13), (5.34) and (5.35) constitute six restrictions on the six
variables A, u, vy, k,, «,, and 7. Further restrictions on A and g would lead to an
overdetermined system having no solution except in certain trivial cases. There may
also exist intervals on which (6.7) fail. We conclude that an equilibrium deformation
may violate (6.3) on some parts of the material domain so that E[ -] will generally fail
to have a minimizer.
(a) Relaxed energy density

To overcome this difficulty we use a certain relaxed energy density W,, constructed
in such a way that it always satisfies (6.7) and (6.8). W, is defined to be the quasi-
convexification of W (Dacorogna 1982, 1989):

W (F) = sup{p(F)A* quasi-convex and ¢ < W}. (7.2)
¢
A function U(r,, - ; &, &%) is quasi-convex at F if and only if

J f Ulry, F+AF; £, £2)d0' d6? > U(r,, F; £, &) f f do'de? (7.3)
D D

for each fixed deformation #,, each fixed point (£, %) €S, for all D = S and for every
AF =u ,® A*withu = 0ondD. U(r,, - ; £, £?) is quasi-convex (without qualification)
if (7.3) is valid for all F.

From the Green—Stokes theorem and Graves’s theorem it is easily demonstrated
that U(r,, - ; £, &%) is quasi-convex if it is convex and only if it is rank-one convex
(Ball 1977a,b). We define the rank-one convexification W, of W and the
convexification W, of W by

W.(F) = sup{¢(F) rank-one convex and ¢ < W}, (7.4)
¢
W,(F) = sup{¢(F) convex and ¢ < W}, (7.5)
¢

respectively. Then since W,, W, and W, belong to successively larger classes of
functions, it follows that
W< W, < W, (7.6)
Although no general algorithm for the computation of W, is known, it may
happen that for a particular W the functions W, and W, can be computed explicitly.
If it is found that W, = W, then the bounds (7.6) furnish W, directly (Kohn & Strang
1986 ; Pipkin 19865, 1989). This is precisely the case for W(F) = W(C) defined by
(4.17). For, the analysis of §6 demonstrates that W(-) is convex if and only if it is
rank-one convex. It follows that W, = W,. Furthermore, our analysis indicates that
convexity and rank-one convexity of W(F) are equivalent to the inequalities (6.7)
and (6.8), where A = |FL| and g = |FM|. From these results we immediately deduce
that
W,

q

(F) = F (A)+G.(p), (7.7)
where

{F.("), G.(*)} =sup{¢(:) convex, non-decreasing and ¢ < F,G}. (7.8)
¢

Phil. Trans. R. Soc. Lond. A (1991)
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0
Figure 1. Relaxed fibre strain energy.

s G()5 - G

Thus F, and @, vanish in the interval [0,1] and are given by the lower convex
envelopes of F and G, respectively, when (A, u) > 1. A sketch of G, for a particular
G is given in figure 1. F, is constructed from ¥ similarly.

According to a relaxation theorem of Dacorogna (1989, §5.2.1), minimizers of the
functional & [ -], obtained by replacing W by W, in (3.9) and (3.12) with S = 88, can
be regarded as minimizers of the corresponding problem for E[-] in the following
sense: If » minimizes £, then there is a minimizing sequence r, for K, converging
weakly to r in S, for which E[r,]—>E[r]. Under suitable supplementary conditions
on W, the existence of a minimizer for £ is assured (Morrey 1952). We refer to
Dacorogna (1989) for precise statements of these and related results.

(b) Continuously distributed wrinkles

Unfortunately Dacorogna’s theorem is not directly applicable here because its
proof requires that W satisfy growth conditions that are not consistent with (7.1).
Thus to motivate the use of W, for A or ue[0,1], we will appeal to a formal
construction involving the notion of a continuous distribution of wrinkles (Pipkin
1986b). This construction furnishes a strain energy that coincides with W when A or
1 belong to the interval [0, 1]. The quasi-convexification of this strain energy for all
A, 4 = 0 is then given by (7.7) and (7.8).

Thus consider a sequence r;;j=1,2,... of deformations with discontinuous
gradients F;. Suppose the fibre stretches A, 4 associated with F, are independent of j,
with A>1and p=1:

(F'F);=C; =2 LQL+MQRM+Asiny(LM+MEL). (7.9)
Then the strain energy W has the same value for every member of the sequence:
W(E)=FA)+G(1)=FQ); j=1,2,... (7.10)

Let functions §(6%, 6%) and 5(0', 6?) parametrize the curves with unit tangents L and
M, respectively, i.e.

0x/0f = aL, Ox[oy= M, (7.11)
where a = |0x/0§] and £ = |0x/0n| are assumed to be strictly positive. For the jth
member of the sequence, let the membrane be folded along each of the K; curves
0" = fH& n); k=1,....K; Let K;~>c0 as j—oo while the spacings between folds
approach zero, in such a way that the sequences f$(£, %) have smooth limits f*(, 7).
We regard the curve 6* = f*(-,7) as a fold for each %. Thus the limiting deformation
contains a continuous distribution of wrinkles.

Phil. Trans. R. Soc. Lond. A (1991)
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Each member 7, of the sequence partitions the membrane into strips between the
K; curves. We label these strips (+) and (—) alternately. Let I;(5) be the indicator
function for (+) strips in the jth partition:

1’ b
L) = {0, zgt; (7.12)

We require that the sequence of partitions be such that
hmJ x)dx = J O(x) dae (7.13)

for all 9, and 5. Then 6(y) is the fractional density of (+) strips in the limiting
deformation and 0 < 6(7) < 1. Consider a sequence A,(7) of continuous functions and
suppose h; > h uniformly. Then

hmJ x)dx = J‘” h(x) 0(x) dz. (7.14)

o

From (7.11) we find the directional derivatives LV =a719/0§ and M-V =
p710/0n. Then equations (4.4) give

or; /08 = all;, Or;/On = fm,, (7.15)
where I, and m; are the deformed fibre trajectories. We assume that the [, are
continuous and

uf, 77e(+),}
m,={"7 ut| =1, 7.16
! {uj7 776(_)7 | ! ( )

for some continuous functions uji. We find that discontinuities in F; at the folds are
of the form
F/{—F; =a,0 M, (7.17)

J
where a; = uf —u;. Thus the derivatives (7.15) are geometrically admissible
(Truesdell & Toupin 1960, ch. C). Of course, for specified functions A, « and g, the [,
uj and their derivatives must be restricted in such a way as to ensure the existence
of r; between folds.

The jth deformation is given by the path-independent integral :

rj=r0+f Ao dg’ +f Uuf +(1—1)u; 18 dyy, (7.18)

0

where ry, = r(&,, 3,) is fixed for the sake of convenience and the integrals are evaluated
on arcs of piecewise constant 7 and §. We now assume that [, and ui —>u_, where
l and u, are continuous. Then r,—r, where

3 U
r=r0+f /\Iadg’+f [Ou,+(1—0)u_]pdy’. (7.19)
£ Mo
The gradient F of the limiting deformation is continuous:
F=MNQ®L+um@ M, (7.20)
where pm = 710r/onp = 0u, +(1—0)u_. (7.21)
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We can take |m| = 1 without loss of generality. Since |u,| = 1 it follows that x can
take on any value in the interval [0,1]. According to (7.10) the strain energy
associated with the limiting deformation (7.19) is #(A) and is thus independent of u.

Thus we find that continuously differentiable deformations with fibre stretches
A>1 and 0<pu <1 are obtained as limits of sequences of finely wrinkled
configurations without compressive stress. The associated strain energy has the value
F(A)+G(1), where G(1) = 0 is the minimum value of G(*). Similarly, deformations
for which 0 < (A, ) < 1 can be achieved by double wrinkling (Pipkin 19865) with no
stress at all. The strain energy attributed to such a deformation has the value
F(1)+G(1) =0.

(c) Fine scale phase mixtures

If G(-) is non-convex in some interval p_ < p < p, (figure 1), then a similar
construction leads to an interpretation of G () in terms of a fine distribution of
phases interspersed in strips in which g = g, and u_ alternately. For example,
consider a sequence F, with strain

Cj=/\2L®L+/¢5M®M+/\/¢jsinyj(L®M+M®L), (7.22)

Py ME(H),
where o= 7.23
i {M_, ne(—). (7.25)

Take the [; and m; to be continuous with continuous limits / and m, respectively.
Then we find r; —>r, with gradient

F=MN®L+umQ® M, (7.24)

where u = 6u,+(1—0)pu_ has values in [p_,p,]. From (7.23), the fibre stress g
associated with r; is the same for all j:

glu) = 9(puy) =k, (7.25)
where £ is the Maxwell stress, defined by
Glpy)—G(p) = k(p,—p_). (7.26)

(d) Pressure loading
Finally, we consider the potential energy

171 = [ [ ) A= pxrsr 10t age (7.27)
s
of a net inflated by constant pressure p (§3). For fixed r,, we define
P() = x(ry; ). (7.28)
Then from (3.11) we compute
(azﬁ/ari,a),aei = %eaﬂr,a[)’ X )‘0, (729)

which vanishes if r is twice continuously differentiable. Thus  is a null-lagrangian.
It follows that y(r,; ') is quasi-affine, satisfying (7.3) as an equality (Ball 1976,
1977a). Thus the quasi-convexification of the integrand in (7.27) is obtained by
replacing W by W, as before.

We are not aware of an existence theory or relaxation theorems for functionals of
the form (3.9)—(3.11) involving volume-dependent pressures. It is clear that any
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results for such functionals will require restrictions on W(:) and p(-) jointly, for
otherwise examples can be constructed for which £ is not bounded below. Lacking
an appropriate theory, we shall assume that the relaxed problem consists of (3.9)-
(3.11) with W, replacing W, for then, and only then, the necessary condition of rank-
one convexity is satisfied for all F. Henceforth we shall confine our attention to the
relaxed problem and drop subscripts q and c in (7.7) and (7.8).

8. Equilibrium

In the remainder of this work we use the relaxed energy density to study the
equilibrium configurations of elastic nets. The fibre stresses f(A) and g(u) associated
with this energy are simply the derivatives of the relaxed fibre strain energies defined
by (7.8). In particular, f(-) and g(-) vanish if their arguments belong to the interval
[0, 1] and are strictly positive and non-decreasing if their arguments exceed unity.
This observation leads us naturally to address the equilibrium problem according to
the values of the fibre stretches. For example, if A and x€[0,1] then both fibre
stresses vanish. In this case the net is said to be slack. Such a configuration cannot
be maintained in the presence of a lateral pressure. However, if the pressure vanishes
then a slack deformation is automatically equilibrated and is therefore highly non-
unique. We shall not consider slack nets further.

If one of the stretches belongs to the interval [0, 1] and the other exceeds unity,
then there is only one active family of fibres and the net is said to be half-slack. These
configurations are associated with the continuously distributed wrinkles of the
previous section. The equilibrium theory of half-slack nets is considered in detail in
§11. Finally, if both fibre stretches exceed unity then the fibre stresses are positive
and the net is said to be tense. The equilibrium equations for a tense net are obtained
simply by substituting (4.21) into (3.13). First we note that

AT, = (fLON I+ @M m o+ fLAL, +gMom (8.1)
Then with the aid of (4.6) and (5.14a,b) we can write (3.13) in the form
(L) A+ (gM*)|, m~+ Afy, p+ 4] g + (Afi, + pgkp +pJ) 0 = 0. (8.2)

Successive scalar-multiplication by n, p and ¢, together with (4.8) and (5.11), leads
to the system
Afk,+ pgk,, +pd =0,
|cos V(M) + Afip + pgnm siny = 0, (8:3)
~ loos yI(fL*)l, + Afy, siny + ugiy, = 0.
The equilibrium equations for a half-slack net are obtained by specializing (8.2).
For example, if y€[0,1] then ¢ = 0 and

(fLA) I+ Af(mp+x,n)+pJn = 0. (8.4)
Then it follows that

(fL), =0, n,=0, Afc;+pJ=0. (8.5)

The second of these equations implies that the active fibres lie along geodesic curves
on the deformed surface. This result, together with (8.5¢), is used to analyse the
deformations of half-slack nets in §11.
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Suppose traction is specified on a part 05, of the boundary. Let the edges x(3S,) and
r(0S,) be parametrized by the arc length parameters s and wu, respectively, and
suppose the parametrizations are similar in the sense that ds/dv > 0. Then on dS, we
have dx = sds and dr = udu, where s and u are the unit tangents to the edges of the
reference and deformed surfaces. It follows from (3.1), (3.2) that

= (ds/du) s*, (8.6)

where u* = u-a* and s* =s-A* Let v=v,4* and o = o, a* be the rightward unit
normals to the edges. Then v =sx N and o =uxn, ie.

A Vo= php, 8%, Wy = €p,U" (8.7)
Combining these results we get
= (ds/du) Jv,. (8.8)

Then from (3.5), (3.14) and (4.19) we can find an expression for the projection of the
traction ¢ onto o

t-o = (ds/du) JIAT(A) (L )2+ g(p) (M- v)2]. (8.9)

Since the relaxed fibre stresses are non-negative it follows that ¢ @ > 0. For a given
traction, this inequality places a restriction on the edge deformation.

From the form of the strain energy function adopted here it is evident that there
is no energetic penalty associated with local collapse (cosy = 0) of the fibres. Thus it
may happen that in equilibrium the fibres of the net collapse in finite regions or on
isolated curves in the (6, 6?) plane. Collapse of fibres on isolated curves is associated
with folding of the membrane along the envelopes of the I- and m-trajectories. These
envelopes are the curves on which the condition / x m = 0 is satisfied. Then according
to (4.14), the limiting tangent planes on either side of an envelope will be oppositely
oriented when [ and m are continuous. Such folding can therefore occur if the
deformation r(6',6%) is a perfectly smooth function. Accordingly, the analysis of
equilibrium for such deformations requires no special consideration of envelopes.
Green & Shi (1989) have obtained a solution containing an envelope for the special
case of plane deformation.

The treatment of finite regions of fibre collapse is more involved. Suppose that such
a region collapses onto the curve r(t), where #(6', 6*) measures arc length along the
curve. Then from (4.4) we get

Al=(L-Vt)yr(t), pum= (M-Vit)r(t). (8.10)
Because #(¢) is a unit vector, it follows that
=|L-Vi| and u=|M-Vi. (8.11)
Then (4.22) furnishes the stress
T =hrr'(t); h*= A"YL-Vt)f(A)L*+ p Y (M- Vi) g(p) M*. (8.12)
The equilibrium equation (3.13) (with zero pressure) reduces to
(V-h)r'(t)+ (h-Vi)r'(t) = 0, (8.13)
where h = h*A,. It follows from (8.11) and (8.12b) that
h-Vi = A(A)+pug(u (8.14)
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Equilibrium of elastic nets 439
and this is positive unless the net is slack. Then (8.13) is equivalent to the system
rg) =0, V-h=0. (8.15)

The first of these results implies that the net collapses onto a straight line. The stress
in this line is described by (8.1556). From (8.12b) it is evident that the individual fibre
stresses cannot be determined in a collapsed region unless the net is half-slack. In the
latter case (8.15b) provides a single equation for the active fibre stress. These
conclusions are similar to those obtained by Pipkin (1980) in a study of the
mechanics of inextensible networks.

9. Weak universal deformations

In this section and the next we attempt to characterize all of the deformations that
can be produced in every homogeneous elastic network by application of edge
traction and lateral pressure alone, irrespective of the forms of the fibre strain energy
functions. Such deformations are said to be universal. The importance of universal
deformations stems from the essential role that they play in the experimental
determination of the strain energy functions.

The search for universal deformations in the context of the conventional theory of
elasticity for isotropic materials was initiated by Ericksen (1954, 1955). Subsequent
contributions to the subject are summarized in a review article by Beatty (1987).
Detailed analyses of universal deformations of homogeneous, isotropic elastic
membranes have been presented by Naghdi & Tang (1977), Wang & Cross (1977) and
Yin (1981). Steigmann (1990) has recently enlarged this family of universal
solutions by accounting for the possibility of wrinkling of the membrane. Green & Shi
(1989) have derived a class of plane universal deformations in the context of the
present theory of elastic nets.

The stresses in a net, and in membranes in general, depend directly on the strain
as measured by (3.4). This leads to equilibrium equations for a net under lateral
pressure whose tangential components do not involve normal curvature, torsion and
pressure explicitly (see (8.3)). It follows that an equilibrium strain distribution
satisfying (8.3b,¢) can be produced in a net by stretching it over a smooth rigid
surface, provided that the normal curvatures and torsion induced in the fibres,
together with the fibre stretches and shear angle, satisfy the Gauss and
Mainardi-Codazzi equations. Contact with this surface then furnishes whatever
distribution of pressure that may be required to maintain equilibrium in the normal
direction. A similar observation in the context of isotropic membrane theory led Yin
(1981) to classify universal deformations as weak or strong. The weak universal
deformations involve restrictions on the strain arising only from the tangential
equations of equilibrium. Strong universal deformations are further restricted by the
requirement that the normal equation of equilibrium be satisfied for a particular
distribution of pressure. We study the weak solutions for tense nets in the present
section. Strong solutions are obtained in §10 for the case of uniformly distributed
pressure.

(@) Tangential equilibrium

The tangential equilibrium of a net is described by (8.3b,¢) or, equivalently, by
the projection of (8.2) onto the tangent plane. According to (5.22), this can be
expressed in the form

S A (L-VA)I4g'(u) (M- V) m+fA) (A, p+ 93, D) +9(0) (un,, g—n,m) =0 (9.1)
Phil. Trans. R. Soc. Lond. A (1991)
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for fibre strain energies that do not depend explicitly on 6" and 6*. If (9.1) is to be
satisfied for every choice of the fibre response functions, then it is necessary and
sufficient that the coefficients of f, g, f* and ¢’ vanish separately:

L-VA=0, M-Vp=90 (9.2)
and App+nyu,l=0, wun,q—n,m=0.
Since {/, p} and {m, q} span the tangent plane it follows that
=0, ny=0; =0, 5,=0. (94)

From (9.2) it follows that the fibre stretches are constant along their respective fibres,
i.e. each fibre is uniformly stretched. According to (9.4), both families of fibres lie
along geodesics on the reference and deformed surfaces. Furthermore, (9.4a,b) and
(5.36a) imply that the gaussian curvature of the reference surface vanishes. Thus
according to a famous theorem, the reference surface, if sufficiently smooth, is
developable onto the plane, at least locally (Kreyszig 1968, §52). The images of the
geodesics are straight lines in the plane.

Since the stresses are bending invariants we can take the L- and M-trajectories
to lie along rectangular coordinates x and y in the plane without loss of generality.
Then equations (9.2) reduce to

0A/0x =0, Ju/oy =0, (9.5)
and with the aid of (5.21) we find that (9.4¢, d) become
O(usiny)/0x = 0A /0y, O(Asiny)/0y = Ou/0x. (9.6)

It follows from (9.5) that A and p are functions of y and z, respectively, and from (9.6)
that

w(x)siny = aX'(y)+aly), Aly)siny = yp'(x)+b(x), (9.7)
where a(y) and b(x) are arbitrary functions. Eliminating siny, we obtain
XA +Aa = yup' + pb. 9.8)

To find necessary conditions for this we assume sufficient smoothness and
differentiate twice with respect to x:

y(up')" + (ub)” = 0. (9.9)
Differentiation of this with respect to y yields (uu’)” = 0, from which we obtain
uwr=A4,22+2B,x+0C,, (9.10)

where 4,, B, and C, are constants. Now (9.9) gives (ub)” = 0 and therefore
b=puD,x+E,), (9.11)

where D, and K, are constants. Further necessary conditions for (9.8) are obtained
by differentiating with respect to y instead of x. This leads to

A=A, 2+ 2B,y+C,y, a=AYDyy+H,), (9.12)

where 4,, B,, Cy, D, and E, are constants. These constants are not independent.
Substituting (9.10)—(9.12) back into (9.8), we find

2(A,y+B,)+Dyy+E, =yAd,2+B)+D,x+E,, (9.13)
Phil. Trans. R. Soc. Lond. A (1991)
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from which we conclude that
A, =A4,=4), B,=D,, B,=D, and E, =E,(=FE). (9.14)
The fibre shear angle can then be found from either of equations (9.7):
siny = (Ap) YAxy+B,x+ B,y +K). (9.15)

(b) Identical, equally stretched fibres

Additional solutions can be obtained for nets in which both families of fibres have
identical response functions, i.e. g(*) = f(+). If the fibres are equally stretched
(v = A) then (9.1) becomes

S QAUL-VA)I+ M -VA)ml+f(A) (A, p+ 9y I+ Ay, q—n,m)=0.  (9.16)
The deformation is universal if and only if
(L-VA) I+ (M-VA)m = 0]
AP+ l+ Ay, q—y,m= O.J
From (9.17a) we have L-VA =0, M-VA = 0 and these imply that VA =0, i.e.
A = const. (9.18)

(9.17)

Now we scalar-multiply (9.17b) by ! and m to obtain
Ny — Aljy| cOS Y| =7, 5iny = 0,)

—77L+/\77,|cosy|+77Msin'y=0.} (9.19)
According to (4.12), (5.21), (5.22) and (9.18),
Any|cosy| = L-V(siny)+ 1y, siny+9,, ‘l
Ayl cosyl = ny,— M- V(siny)+y, siny.J (9.20)
Then (9.19) furnishes the system
L-V(siny) = —2y,,siny, M V(siny) = 2y,sinvy, (9.21)
which is equivalent to
V(siny) = 2siny(y, M—n,, L). (9.22)

Clearly siny = 0 is a solution and this, together with (9.18) and (4.10), implies that
the strain is a uniform dilation: a,; = A4,. In this case there are no restrictions on
the reference surface.

If siny is not identically zero then (9.22) is equivalent to

V(n|siny[f) =y, M—y,, L. (9.23)
Then if the right-hand side is continuously differentiable we require
N-Vx(y,M—ny,L)=0. (9.24)

This is a restriction on the initial fibre arrangement that is necessary for existence of
a universal solution. If this condition is satisfied then |sin y| is determined from (9.23)
by integration. Equation (9.24) implies the existence of a twice continuously
differentiable function @(6*, 6%) such that

N, =M-Vo, n,, =—L-Vg, (9.25)
Phil. Trans. R. Soc. Lond. A (1991)
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and (9.23) then gives
siny = ce?, (9.26)

where ¢ is an arbitrary constant.

To interpret (9.25) we can make use of the fibre coordinates £ and # introduced
n (7.11). The associated metric components are (4, ) diag («?, £?) (see (7.11)) and
the components of L and M are L' =a™', L*=0, M'=0 and M* = f~'. Then

equations (9.25) become

= f10p /0y, g = —o 1 0L, (9.27)
From (5.22) we have
7, =—(@f) 0a/on and 1y, = (af)10L/0& (9.28)
and therefore, since « and f are positive by definition,
I(InpB)/0f = —0¢/08, O(lna)/Oy =—0¢p/0y. (9.29)
These give
a=a(f)e? and S=0b(n)e?, (9.30)

where a(£) and b(7) are arbitrary positive functions. Thus the first fundamental form
on the reference surface must be expressible as

|dx|* = [A(§) dE*+B(n) dn*1p(E,m); p=e"*, (9.31)

where A = a? and B = b%. Coordinates that yield a first fundamental form of this type
are known as isometric parameters (the terms isothermal and isothermic are also
used). Thus we find that the fibre trajectories must be isometric curves on the
reference surface. This does not seriously restrict the class of admissible reference
surfaces, for it is known that every sufficiently smooth surface can be parametrized,
at least locally, in terms of isometric coordinates (Kreyszig 1968, §58). Simple
examples of isometric curves are the meridians and circles of latitude on surfaces of
revolution and the lines of curvature on minimal surfaces (see, for example,
Weatherburn 1961, §§39 and 91). If the initial fibre trajectories are isometric curves
as required, then there exist universal solutions with siny given by (9.26) and

(9.310): )
siny = ¢/p(&, n). (9.32)

To summarize, weak universal deformations of arbitrary nets exist only if the
reference surface is developable onto the plane. The distributions of the stretches and
shear angle are given by (9.10), (9.12a), (9.14) and (9.15) in terms of plane
rectangular coordinates. If the net consists of identical fibre families and these are
equally stretched, then the stretch is uniform. Uniform surface dilations with sinvy
vanishing identically can be produced in every such net. Solutions with siny not zero
exist only if the fibres lie along isometric curves on the reference surface. Then siny
is determined by the geometry of these curves, apart from an arbitrary constant.

10. Strong universal deformations

Strong universal deformations are those weak deformations that can be maintained
in every net by a lateral pressure whose distribution is prescribed. Here we consider
only uniform pressure, including the special case of zero pressure.
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(a) Arbitrary nets

The equation of normal equilibrium is obtained from scalar multiplication of (8.2)
by n:
Af(A) &+ pg(p) Ky +pJ = 0. (10.1)

If the pressure vanishes then we can obtain the deformation explicitly : In this case
(10.1) is satisfied for every choice of the fibre response functions if and only if x, and
K, vanish. These results, together with (9.4¢,d), (9.5), (5.14a,b) and (4.6) yield

AN oz =0, d(um)/dy = 0. (10.2)

According to (4.4), these are equivalent to 0°r/02® = 0 and 0*r/0y® = 0, respectively,
and therefore
r = Axy+ Bx+ Cy+ D, (10.3)

where A, B, C and D are arbitrary constant vectors.

Conversely, if the deformation is given by (10.3) then (9.4¢,d) and (9.5) are
satisfied and it follows that (9.10), (9.12a), (9.14) and (9.15) are valid. To see this we
compute the deformation gradient from (4.4,7):

F=0r/ox) @ L+ (0r/0y) ® M = (Ay+B)® L+ (Axz+ C) ® M. (10.4)
This delivers the strain in the form (4.9), where
A=A Ay*+24A-By+B-B, u*=A -Ax*+2A4 Cx+ C'Cl
and Ausiny = A-Axy+A-Bx+ A - Cy+B-C. J (10.5)
These are the same as (9.10), (9.12a), (9.14) and (9.15), with

A=AA B,=AB, B,=A-C, C,=C-C, C,=B'B, E=B-C.
(10.6)

This solution contains the plane universal deformation of Green & Shi (1989) as a
special case. In the general case, it follows from (5.8) and (5.14¢,d) that (10.3)
describes a surface with variable, non-positive gaussian curvature.

For non-zero pressures we write (10.1) as

—p =JAQR) k,+B(p) k], (10.7)
where AA) = Af(A), Bu) = pg(p). (10.8)

We assume that the pressure is uniform, i.e. Vp = 0. Then from (10.7) and (9.5) we
obtain

AA) (JVk,—k, V) +B(u) (JVk,, —k,, VJ)
+ A (A) Jk, N (y) Vy+ B (u) Jk,, o' () Ve = 0. (10.9)
This is satisfied for every choice of the fibre response functions if and only if
V(n|k,|) = V(In|k,|) = V(In J)l
and KA (y) =0, k,pu(x)=0, }

and therefore

(10.10)

kK, =ad, k,=0bJ, aX(y)=0, by (x)=0, (10.11)
where a and b are arbitrary constants.

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY 4

PHILOSOPHICAL
TRANSACTIONS
OF

A
AN

' \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

444 D. J. Steigmann and A. C. Pipkin

If @ and b both vanish then the pressure vanishes also. We have already considered
this case. The remaining possibilities are: (i) @ and b are non-zero, (ii) either a or b
vanishes. To consider these cases further we use (9.4¢,d) to reduce the Gauss
equation (5.34) to the form

J?k = — (Ap cosy) Oy /0x Dy. (10.12)
From (5.35) and (9.4) the Mainardi—-Codazzi equations become
Ty 20(ur) [ —2(Ak,) [y ] = (K, sin y—7), }
J(Ap)2[0(uk,,) /02 —(AT) QY] = Py (K sinY —T),
where, in consequence of (5.27) and (5.28),
J¢, = (Acosy)dy/dy, Jp,, =—(ncosy)dy/ox. (10.14)

These combine to give

(cosy) [D(ut)/dx—(Ak,)/dy] = /\(Klsiny—T)ay/ay,}
(cosy) [0(AT) /Oy —O(uk,,)/0x] = w(k,,siny—71)dy/ox.

If neither of the constants a, b vanishes, then (10.11¢,d) imply that A and x are
constants. We conclude from (9.10), (9.12a), (9.14) and (9.15) that sinvy is also
constant. Then x = 0 according to (10.12), i.e. the deformed surface is developable
onto the plane. From (10.11a, b) we also infer that «, and «,, are constants, and then
from (5.8) that 7 is constant. This solution satisfies the Gauss and Mainardi—Codazzi
equations identically. Now suppose that b = 0 and @ # 0. According to (10.11¢) we
have A = const. This result, together with (9.12) and (9.14), implies that 4 = 0 and
B, = 0. Then (9.10), (9.15), (10.11) and (5.8) can be used to put the Gauss equation
(10.12) into the form 72 = —B2sec?y(Au?)~2, whence it follows that B, =0 and
7 = 0. Thus u, siny, k; are constants and « = 0, so that the deformed surface is again
developable onto the plane and the Mainardi-Codazzi equations are trivially
satisfied. The case a = 0 and b # 0 is similar.

Thus we find that strong universal deformations of arbitrary nets under uniform
pressure are constant-strain mappings of developable surfaces onto developable
surfaces. The fibres are mapped onto geodesics of constant torsion forming either
straight lines or circular arcs that lie in planes containing the surface normal. If the
pressure vanishes then the deformation maps developable surfaces onto the surfaces
of variable, non-positive gaussian curvature described by (10.3). The fibres are
mapped onto straight lines.

(10.13)

(10.15)

(b) Identical, equally stretched fibres
For nets composed of identical fibres that are equally stretched, (10.7) reduces to

—p=JT4A) (k,+k,,) (10.16)

Then from (9.18) it follows that (10.16) is satisfied for all such nets under uniform
pressure if and only if
K+ Kk, =aJ; a = const. (10.17)

In view of the analysis of §9, there are two cases to consider according as siny is
identically zero or not. In the first instance we find from (9.18), (5.21), (5.22) and
(6.27) that

/\771 =ML /\ﬂm = MM ¢l = Nms ¢m =1 (1018)
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Then the Gauss equations (5.34) and (5.36a) give
Xk = (n, M*—ny L*)|, =K, (10.19)

and the Mainardi-Codazzi equations (5.35) become

(TL* =k, M*) |, = 01, Ky — 771

10.20
(Ko L —=TM*) |, = mpr K=, 7- J ( )

Recalling (5.360, ¢c), we see that these are also the equations that are satisfied by the
fibre curvatures and torsion on the reference surface.

A fundamental existence and uniqueness theorem in surface theory (see, for
example, Stoker 1969, ch. 6) states that a solution of the Gauss and Mainardi—Codazzi
equations determines a surface uniquely apart from rigid body motions. Conversely,
a surface and all other surfaces obtained from it by a rigid motion furnish unique
values of b,, for a given choice of convected coordinates. From this theorem and
equations (10.19), (10.20), (5.8) and (5.37) it follows that

=Ny, Ky = Ay, =AM, (10.21)

Now from (10.17) the mean curvature of the deformed surface is constant and
(10.21a,b) then imply that the mean curvature of the reference surface is also
constant. If the membrane is closed then both the reference and deformed surfaces
are spheres (Hopf 1989, ch. 6). If the pressure vanishes then both surfaces are
isometric to minimal surfaces. In either case the strain consists of a uniform surface
dilation.

If the fibres lie along isometric curves on the reference surface then siny need not
vanish identically. In this case siny is determined by the geometry of these curves
in accordance with (9.32). The analysis of the Gauss and Mainardi-Codazzi equations
therefore depends on the choice of reference surface. For illustrative purposes we
consider fibres that initially lie along rectangular coordinate axes in the plane. Then
7, = Ny = 0 and from (9.19) we find that »; and #,, vanish, i.e. the deformed fibres
are geodesics. From (9.22) (or (9.32)) it also follows that siny = const. With these
results, the Gauss equation (5.34) gives k = 0, i.e.

7% = K, K- (10.22)
In the present context the Mainardi-Codazzi equations (5.35) take the simple forms
0r/0x = 0k, /Yy, Ok,,/0x = O0T/dy, (10.23)

where x and y are the fibre coordinates. From (10.17) it also follows that
Ok,/0x = —0k,,/0x, Ok, /0y =—0k,,/0y (10.24)

and these imply that «,, «,, and 7 are harmonic, i.e.
T+ik, = a(z), K, +iT =b(z) and «k,+ik, = c(2), (10.25)

where a, b, ¢ are analytic functions of the complex variable z = x+1iy, subject to the
restrictions

Re (@) =Im (), Im(a) =Re(c), Re(b) =Im(c). (10.26)
Now (10.17) implies that Re (¢)+Im (¢) = const. and since ¢(z) is analytic it follows
that ¢(z) = const. Then a(z) and b(z) are also constants from (10.26). This in turn
implies that «;, «,, and 7 are all constants, with 7 determined in terms of «; and «,,
by (10.22).

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

e

P\

A Y

|
L
)

P

/[

A

y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/an \

a

THE ROYAL A

A

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

446 D. J. Steigmann and A. C. Pipkin

Thus the deformation is a constant-strain mapping of the plane onto a developable
surface. The fibres are mapped onto geodesics of constant curvature and torsion. If
the pressure is zero then (10.16) gives «,, = —«;, (10.22) gives 72 = —«}, and these
imply that «, =0, «,, = 0 and 7 = 0. Thus the curvature tensor vanishes and the
deformed surface is a plane.

11. Equilibrium of half-slack nets
(@) General theory

The equilibrium theory of half-slack nets has certain features that distinguish it
from the theory of tense nets considered thus far. In particular, we find that the
deformation can be evaluated explicitly in the absence of lateral pressure. Here
we consider deformations for which x€[0,1] and A > 1. (The treatment of the case
A€[0,1]and g > 1 is similar and is therefore omitted.) Then g(¢) = 0 and equilibrium
configurations of the net are described by (8.5). The results (8.5b,c) lead to an
equation for the deformation r(6*,6%). From (5.14a) and (4.6a),

AUL-V)I = —p(Af)Tm, (11.1)
and (4.12) and (4.14) provide
Jn = Aulxm. (11.2)
These combine with (4.4) to give

A YL-V)[ANL-V)r] = —p[AQ)]HL-V)rx (M-V)r. (11.3)

This result and (8.5a), V- L] =0 (11.4)

furnish the equilibrium equations for half-slack nets.
Suppose the traction ¢ is specified on a part 0S, of the boundary. Then from (3.14)
and (4.21) (with ¢ = 0) we have

t=fQ)(Lv)I; (6,670, (11.5)
where v is the rightward unit normal to the arc x(0S,). Since f > 0 we require
SOIL-v =, sgn(L-v)l=t/|d; (6',0%)€edS, (11.6)

and thus traction data deliver the boundary values of f and /. It follows from (11.4)
that the traction problem is statically determinate in the sense that f is independent
of the deformation. If ¢ vanishes on the boundary then either L-v = 0, so that 09, is
an L-trajectory, or f= 0 and the boundary values of / can be chosen arbitrarily.
Because (11.3) and (11.4) is not an elliptic system, existence of solutions to the
traction problem is not to be expected unless the data are suitably restricted. A
similar remark applies to the problem of placement in which 7 is prescribed on a part
08, of the boundary.

For pressurized nets the solution of (11.3) presents a formidable challenge.
Nevertheless, we can use (11.4) and (8.5b) to obtain information about the
distribution of strain in the net without recourse to (11.3). According to (5.21a) and
(2.20b), we can write (8.5b) in the form

NV (AL+psinyM) = 0. (11.7)
The system (11.4), (11.7) furnishes restrictions on A and the combination usinvy.
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However, (11.7) is automatically satisfied if » satisfies (11.3) and is therefore
redundant if an expression for the deformation is available. To prove this claim we
introduce a coordinate transformation (6*,6%) — [¢(6*, 6%), Y(6*, 6%)] defined by

L-Vp=A, L-Vy=0. (11.8)
Then the gradients of ¢ and ¥ are
Vo =AL+ (M- V)M, V=M V)M (11.9)

and the active fibres are the curves M-dx = 0 on which y = const. The jacobian of
the transformation,

NV x Vi = \(M-Vy), (11.10)

is non-zero on the material domain unless ¥ is identically constant. Barring this case,
the parameters ¢ and i define a set of coordinates in the (6%,6?%)-plane and the
gradient operator can then be written

V =V¢(0/0¢)+ Vir(d/0y). (11.11)
This furnishes the directional derivative
AYL-V)=0/0¢; I=A"YL-V)r=20r/0¢. (11.12)
Thus ¢ measures arc length along the [-trajectories. We also find
um= (M-V)r= (M-V¢)or/dp+ (M- Vi) or/oy (11.13)
and then (11.3) becomes
0%r/0¢® = —pf 1 (M- Vi) (Or/0¢) x (Or/0ifr). (11.14)

If we choose M-V = f, so that
Vi = fM, (11.15)
then (11.14) reduces to

32 /g = —p(dr/Op) x (Or/). (11.16)

Such a choice is always possible if fM is smooth and the (6%, 6%)-plane is simply
connected, for
N-VX(fM)=0 (11.17)
in view of (11.4).
Under similar restrictions it follows from (11.7) that there exists a twice
continuously differentiable function E(¢, ) such that

AL+usinyM = VE = (0E/0¢) V¢ + (0B /0yr) V. (11.18)
Then A = (L-V¢)0E/0¢ and from (11.8a) we find that 0E/0¢ = 1, i.e.
E=¢+H®W) (11.19)
for some function H(-). Then (11.18) gives
usiny = M-VE = M -Vo+H () M-Vif. (11.20)
Alternatively, a solution r of (11.14), together with (4.8) and (11.13), provides
usiny = M-Vo+ (M-Vi) (0r/0¢p) - (Or/dy). (11.21)

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY 4

PHILOSOPHICAL
TRANSACTIONS
OF

A
AN

' \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

448 D. J. Steigmann and A. C. Pipkin

Thus we require
H'() = (@r/0g)- (@r/2p). (11.22)

This restriction is automatically satisfied by any twice continuously differentiable
solution of (11.14). To see this, differentiate the right-hand side of (11.22) with
respect to ¢ to get

o (2N (3O _ (BN v () (2
(55) o)+ 65) (Ge) = G - e v (G () s
which vanishes identically. Thus (11.7) is not an independent condition.

The formulation involving the coordinates ¢ and y is particularly useful if the
lateral pressure vanishes. For then (11.14) (or (11.16)) can be integrated immediately
to yield

r = Bly) +uy), (11.24)

where u is an arbitrary vector-valued function. This is the equation of a ruled surface
(Struik 1961, §5.5) generated by a one-parameter family of unit vectors I. The partial
differential equations (11.4), (11.8) furnish restrictions on A, ¢ and i which, in
conjunction with suitable boundary data, can be used to obtain the deformation
explicitly. For example, suppose a fibre ¢y = C' (const.) intersects a part 3S, of a
boundary on which 7 is prescribed. Let A and B be the points of intersection. Then
(11.24) gives

r(d)—r(B) = [¢(4)—$(B)]L(C), (11.25)

from which boundary values of ¢ can be deduced.
If the deformation is known we use (11.13) to find

pm = (M-VG) I(r)+ (M- Vi) [$1 () +u' (¥)], (11.26)

which can be used to verify that ue€[0, 1] @ posteriori and to locate the curves on
which g =1 that form the boundaries between tense and half-slack regions of the
net. The fibre shear angle then follows from (11.21) and (11.24):

psiny = M-Vé+ (M-Vy) (I ). (11.27)

(b) Plane rectangular network

The foregoing theory is particularly easy to apply if the fibres form a plane
rectangular network in the reference configuration. Let i and j be fixed unit vectors
in the x and y coordinate directions and suppose o € [0, in) is the fixed angle between
the L-trajectories and the z-axis:

L = cosai+singf, M = —sinai+ cosay. (11.28)

If the fibre strain energy is strictly convex then f’(A) > 0 and (11.4) and (11.28a)
lead to L:-VA=0 for homogenous materials. This result and (11.8a) give
L-V(L-Vg¢) =0, ie.

cos® a 0%¢p /0x® + 2 sin o cos o 0%p /O Oy + sin? o 0% /Oy? = 0, (11.29)
whose general solution is expressible in the form

¢ = xa(y—xtana)+b(y —x tan «), (11.30)
Phil. Trans. R. Soc. Lond. A (1991)
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Equilibrium of elastic nets 449
where a(*) and b(*) are arbitrary. From (11.8b) is also follows that
cosadyr/x+sinady/dy = 0; ¥ =c(y—zxtana), (11.31)

for some function ¢(*). Then in the absence of pressure it is evident from (11.24) that
the deformation can be expressed as

r=za(y—xtana)+ by —x tana), (11.32)

where a(-) and b(*) are vector-valued functions.

As an illustrative example, we consider a rectangular region in the reference plane
with boundaries defined by y = +1 and « = 0, 1. Suppose the edge z = 0 is fixed and
the edge « = 1 is collapsed onto a point with coordinates («,y,z) = (1,0, 4), where 2z
measures elevation above the plane. Then the data are

r(0,y) =yj, r(l,y)=i+hk; k=ixj. (11.33)

We take the fibres to be aligned with the coordinate axes so that & = 0. Then (11.32)
and (11.33) give
bly)=yj, aly)=i—yj+hk (11.34)

and the deformation is r=x(+hk)+y(l—2x)j. (11.35)

This provides

M= (L-V)r=a(y); A= (1+h*+y2))
_ , (11.36)
pm=MVyr=(1-2x)j;, p=1—=x,

and then (4.8) furnishes the shear angle

siny = —y/(1+h*+y2). (11.37)
We note that A > 1 and p€[0;1] so that the net is indeed half-slack, in accordance
with our assumption.

(€) Surface of revolution : axisymmetry

Suppose that in the reference configuration the fibres are arranged in an
orthogonal network on a surface of revolution, described parametrically by

x = 7r(s)i(0)+2(s) k. (11.38)

Here s measures arc length along a meridian, @ is the azimuthal angle, r is the radius,
z measures elevation above a base plane with unit normal k and i is a unit vector
perpendicular to the axis of revolution and directed radially outward from it. Then
the gradient operator is

V = e(0/3s)+r7Yj(0/00); e=1r'(s)i+2'(s)k, (11.39)

where e is the unit tangent to a meridian and j = i'(#) is tangential to a circle of
latitude. Let a(s) be the angle between an L-trajectory and a meridian:

L = cosae+sinoj, M = sinoe—cosoy. (11.40)
Then (11.4) becomes
O(frcosa)/0s+sinadf/06 = 0. (11.41)
For axisymmetric stress states (9f/00 = 0) this gives
f=ar'seca; a = const. (11.42)
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and therefore A =fYartseca), (11.43)

where f1(-) is the inverse of f(-), which is uniquely determined for strictly convex
fibre strain energies. According to (11.8), (11.39) and (11.40),

0 | 1400 W ogng ¥
cosaas+r smocaﬁ—/\, cosaas+r smocaa—O. (11.44)

We have some flexibility in constructing the functions ¢ and 3. If we choose
/00 = 1 and let ¥ = 6 on a parallel of latitude s = s,, then

¢=0—JS rttanoadd. (11.45)

So

For axisymmetric stress states A is a function of s only, and thus we can satisfy
(11.44a) by taking 0¢/00 = 0. Setting ¢(s,) = 0 we obtain

¢=f/\secocd§. (11.46)

The results (11.24), (11.45) and (11.46) provide the general solution for an
axisymmetrically stressed net under no normal pressure. It then follows that

pm = (M-V)r = Atanal—r"'seca[pl () + u’(;ﬁ)],l
J

///Siﬂ'}/ = I[,(,m‘lz Atana_r_l secal(w).ul(w). (11.47)

We illustrate this theory with a simple example. Suppose the reference surface is
the cylinder » = const., —L < z < L and the fibres are aligned with the meridians and
circles of latitude (« = 0). Let the ends of the cylinder be fixed onto rigid hoops of
radius 7. Suppose the hoops are rotated through the relative angle 27 about the
cylinder’s axis and displaced along the axis to the relative separation 2I. For
homogeneous materials, (11.43) gives A = const. and (11.45) and (11.46) give y = 6
and ¢ = Az. Thus

r = A2l(0)+ u(b). (11.48)

The data are r(+L,0) = +1lk+ri(6+7), and therefore

lk+7i(0+7) = ALIO) + u(6).
Ik +ri(f—1) = —/\Ll(0)+u(0).} (11.49)
These result in
u(0) = rcosti(0), Al6)= (I/L)k+ (r/L)sinTj(0)
and A2 = (I/L)*+ (r/L)*sin?7. } (11.50)
From (11.47a,b),
pum = (z/L)sin7i(0)—cos7j(0); wu*= (z/L)?sin®*7+ cos?T,
Apsiny = —(r/L)sin7 cos 7. } (11.51)

Thus u <1 for all ze[—L,L] and our assumption that the net is half-slack is
verified.
The results (11.48) and (11.50) deliver the equation of the deformed surface:

r = (z/L)lk+r[cosTi(6)+ (z/L) sin 7j(0)], (11.52)
Phil. Trans. R. Soc. Lond. A (1991)
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which can be put into the form
r=pR)i0+1(z)+{()k, (11.53)

where p is the deformed radius, { is the axial position and I" is the angle of twist. To
see this we write
r=u(z)i(0)+v(z)jO)+ k) k, (11.54)

where w = pcos I  and v = psin I'. Comparison with (11.52) results in
w=rcos7, v=r(z/L)ysint and {=I(z/L). (11.55)
Then the deformed radius and twist angle are given by

p(z) = r[cos? T+ (z/L)sin?7]}, tan I'(z) = (z/L)tanr. (11.56)

This work was supported by the Natural Sciences and Engineering Research Council of Canada and
by the U.S. National Science Foundation. We gratefully acknowledge this support. We thank
E. N. Kuznetsov for informing us that the theory of Tchebychev curvature is developed in
Shulikowski (1963).

Appendix A

In this appendix we establish the Gauss and Mainardi-Codazzi equations (5.34)
and (5.35). For this it is necessary to first find formulae for the various terms in (5.32)
and (5.33) as functions of the basic variables A, u, vy, ;, k,, and 7. For example, from
(2.200), (4.6) and (5.13¢,d) it easily follows that

W, = uliv,— AP, (A 1)
where, in consequence of (5.5), we have
w, = A, L, +putM,, v, = puk,, M, +ATL,. (A 2)
According to (2.9a) and (5.11a),
PP =arell, = J T, (A 3)
Substituting (5.20a) gives
Jp* = AM*—psinyL~. (A 4)
From these results we obtain
Wb, p* = J T ApplF (K, — T8I0 y) — AMP (T — Kk 8iny)]. (A 5)
Combining this result with (A 1) and (A 2a) leads to
(Wb, p*) up = T AR (K Ky —T7). (A 6)
Then in view of (5.8), (5.32a) becomes
Jk = phray, ., (A7)

where « is the gaussian curvature. The right-hand side of this result can be written
as

Wy = phrag, = (W), (A8)
From (2.205), (4.5) and the definition (5.13a) it follows that
way = AMY(p- VI 5) —pl?(p-mPl p). (A9)
Phil. Trans. R. Soc. Lond. A (1991)
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Then from (5.14a,c) we get
Wy = An M —pg, L. (A 10)
We can eliminate ¢, by using (5.27):
Wy = A, M7 — py,, L7 — (J ' A cos y) M*L7y . (A 11)

In view of (4.12) it is evident that J'Au cosy = + 1 according as cos vy is positive or
negative. Then (A 7) becomes

Jr = (A, M — py L), — (J 7 A cos y) (M*LFy ). (A 12)
In the last term we can use (2.20b) to obtain the symmetric form
MLy g = ML+ LEMP)y |, (A 13)

and thereby arrive at the Gauss equation (5.34). By following a similar procedure we
can show that (5.33a) leads to the same result.

Next we derive the Mainardi—-Codazzi equations (5.35) from (5.32b) and (5.33b).
First we use (4.6) and (5.13a) and (5.14a,c¢) to write

LPxy= Ay, MPxy= pg,. (A 14)
These results, combined with (A 5), yield
(WP, 1) 25 = T (K —7 S0 Y) + (K sy —7)]. (A 15)
We also have u”u, , = (4"uy)|,. According to (2.20b) and (A 2),
Wrug = Ak, MY —prl. (A 16)

The result (5.35a) follows on substituting the foregoing into (5.324). Equation
(56.35b) follows from (5.33b) similarly.

Pipkin (1984) has derived the Gauss and Mainardi-Codazzi equations for the
special case of an initially flat net with inextensible fibres. We can recover his results
by taking A = 1, g = 1 identically and L, M to be unit vectors in the directions of
plane rectangular coordinates x and y. For this case the Gauss equation (5.34)
becomes

Jk = Oy,/oy —m,,/0x— (J* cosy) 0%y /0x Oy, (A 17)
and (5.21a,b) yield
7, = (J tcosy)dy/dx, 9, =—(J 'cosy)dy/dy. (A 18)

These combine to give
kcosy = 0%y /0x dy, (A 19)

in agreement with Pipkin’s equation (3.10).
The Mainardi-Codazzi equations (5.35) reduce to

J (01 /0x — 0k, /Oy) = n,(k,, —TSInY)+ @, (k;siny —7),
} (A 20)

J(0k,, /0 —07/0y) = (K, SinYy —7)+9,,(k, —Tsiny).
It follows easily from (5.27) and (A 18) that ¢, and ¢,, vanish identically. Then
(A 20a,b) coincide with Pipkin’s equations (3.11):
cos y(0r/dx — 0k, /Qy) = (k,, —Tsin7y) dy/ 0z,
cos y(0k,,/0x—0r/0y) = (Tsiny —«;) dy/0y. } (A 21)
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